Search results for "Galactic center"

showing 10 items of 21 documents

THEMIS: A Parameter Estimation Framework for the Event Horizon Telescope

2020

This is an open access article.-- Full list of authors: Broderick, Avery E.; Gold, Roman; Karami, Mansour; Preciado-López, Jorge A.; Tiede, Paul; Pu, Hung-Yi; Akiyama, Kazunori; Alberdi, Antxon; Alef, Walter; Asada, Keiichi; Azulay, Rebecca; Baczko, Anne-Kathrin; Baloković, Mislav; Barrett, John; Bintley, Dan; Blackburn, Lindy; Boland, Wilfred; Bouman, Katherine L.; Bower, Geoffrey C.; Bremer, Michael; Brinkerink, Christiaan D.; Brissenden, Roger; Britzen, Silke; Broguiere, Dominique; Bronzwaer, Thomas; Byun, Do-Young; Carlstrom, John E.; Chael, Andrew; Chatterjee, Shami; Chatterjee, Koushik; Chen, Ming-Tang; Chen, Yongjun; Cho, Ilje; Conway, John E.; Cordes, James M.; Crew, Geoffrey B.; Cu…

010504 meteorology & atmospheric sciencesExploitAstronomy01 natural sciencesData typeSet (abstract data type)Galactic center0103 physical sciencesVery-long-baseline interferometry16471769010303 astronomy & astrophysics0105 earth and related environmental sciencesVery long baseline interferometryPhysicsEvent Horizon TelescopeSupermassive black holeAstrophysical black holesGalactic CenterAstronomy and Astrophysics98565Black hole[SDU]Sciences of the Universe [physics]Space and Planetary ScienceAstronomy data analysis1858[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]AlgorithmSubmillimeter astronomy
researchProduct

Updated collider and direct detection constraints on Dark Matter models for the Galactic Center gamma-ray excess

2016

Utilizing an exhaustive set of simplified models, we revisit dark matter scenarios potentially capable of generating the observed Galactic Center gamma-ray excess, updating constraints from the LUX and PandaX-II experiments, as well as from the LHC and other colliders. We identify a variety of pseudoscalar mediated models that remain consistent with all constraints. In contrast, dark matter candidates which annihilate through a spin-1 mediator are ruled out by direct detection constraints unless the mass of the mediator is near an annihilation resonance, or the mediator has a purely vector coupling to the dark matter and a purely axial coupling to Standard Model fermions. All scenarios in w…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Large Hadron ColliderAnnihilation010308 nuclear & particles physicsPhysics beyond the Standard ModelDark matterGalactic CenterFOS: Physical sciencesAstronomy and AstrophysicsFermion01 natural sciencesStandard ModelPseudoscalarHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesAstrophysics - High Energy Astrophysical Phenomena010306 general physicsAstrophysics - Cosmology and Nongalactic AstrophysicsJournal of Cosmology and Astroparticle Physics
researchProduct

Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo's first three observing runs

2021

We report results from searches for anisotropic stochastic gravitational-wave backgrounds using data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. For the first time, we include Virgo data in our analysis and run our search with a new efficient pipeline called {\tt PyStoch} on data folded over one sidereal day. We use gravitational-wave radiometry (broadband and narrow band) to produce sky maps of stochastic gravitational-wave backgrounds and to search for gravitational waves from point sources. A spherical harmonic decomposition method is employed to look for gravitational-wave emission from spatially-extended sources. Neither technique found eviden…

gravitational radiation: anisotropyPhysics and Astronomy (miscellaneous)gravitational radiation: stochasticAstronomyAstrophysics01 natural sciencesGeneral Relativity and Quantum CosmologyPhysics Particles & FieldsCosmology & Astrophysicsenergy: fluxenergy: densitygravitational radiation: energyLIGOQCQBPhysicsSettore FIS/01Spectral indexPhysicsGalactic CenterAmplitudeGeneral relativitySidereal timePhysical Sciences[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]gravitational radiation: power spectrumGravitationdata analysis methodAnisotropic stochastic gravitational-wave backgroundExperimental studies of gravityFOS: Physical sciencesO3O2General Relativity and Quantum Cosmology (gr-qc)Astronomy & AstrophysicsStochastic Background Gravitational Waves LIGO Virgo O1 O2 O3O1Gravitational wavesGeneral Relativity and Quantum CosmologyUPPER LIMITSstatistical analysis0103 physical sciencesadvanced LIGO and Virgoddc:530KAGRAKAGRACosmology & Astrophysics010306 general physicsSTFCgravitational waves; LIGO; VirgoGravitational WavesScience & Technology010308 nuclear & particles physicsGravitational waveVirgogravitational radiation: backgroundRCUKGalaxyLIGOVIRGOgravitational radiation: emissionspectrum: densityRADIATIONCROSS-CORRELATION SEARCHStochastic BackgroundDewey Decimal Classification::500 | Naturwissenschaften::530 | PhysikgalaxyExperimental studies of gravity; General relativity; Gravitational waves
researchProduct

Detecting the stimulated decay of axions at radio frequencies

2018

Assuming axion-like particles account for the entirety of the dark matter in the Universe, we study the possibility of detecting their decay into photons at radio frequencies. We discuss different astrophysical targets, such as dwarf spheroidal galaxies, the Galactic Center and halo, and galaxy clusters. The presence of an ambient radiation field leads to a stimulated enhancement of the decay rate; depending on the environment and the mass of the axion, the effect of stimulated emission may amplify the photon flux by serval orders of magnitude. For axion-photon couplings allowed by astrophysical and laboratory constraints(and possibly favored by stellar cooling), we find the signal to be wi…

axionsPhotonAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesRadio telescopeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesStimulated emissionAxionGalaxy clusterAstrophysics::Galaxy AstrophysicsPhysicsdark matter detectorsdark matter theory010308 nuclear & particles physicsGalactic CenterAstronomy and AstrophysicsAstrophysics - Astrophysics of Galaxiesdwarfs galaxiesGalaxy3. Good healthHigh Energy Physics - Phenomenologyaxions; dark matter detectors; dark matter theory; dwarfs galaxiesAstrophysics of Galaxies (astro-ph.GA)Journal of Cosmology and Astroparticle Physics
researchProduct

Detection of Intrinsic Source Structure at ~3 Schwarzschild Radii with Millimeter-VLBI Observations of SAGITTARIUS A*

2018

We report results from very long baseline interferometric (VLBI) observations of the supermassive black hole in the Galactic center, Sgr A*, at 1.3 mm (230 GHz). The observations were performed in 2013 March using six VLBI stations in Hawaii, California, Arizona, and Chile. Compared to earlier observations, the addition of the APEX telescope in Chile almost doubles the longest baseline length in the array, provides additional {\it uv} coverage in the N-S direction, and leads to a spatial resolution of $\sim$30 $\mu$as ($\sim$3 Schwarzschild radii) for Sgr A*. The source is detected even at the longest baselines with visibility amplitudes of $\sim$4-13% of the total flux density. We argue th…

BrightnessAstrophysics::High Energy Astrophysical PhenomenaAstronomyFOS: Physical sciencesContext (language use)General Relativity and Quantum Cosmology (gr-qc)Astrophysics01 natural sciencesGeneral Relativity and Quantum Cosmologylaw.inventionTelescopelaw0103 physical sciencesVery-long-baseline interferometry010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsSupermassive black hole010308 nuclear & particles physicsGalactic CenterAstronomy and AstrophysicsAstrophysics - Astrophysics of GalaxiesSagittarius A*Space and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Schwarzschild radius
researchProduct

A parametric description of the 3D structure of the Galactic bar/bulge using the VVV survey

2017

We study the structure of the inner Milky Way using the latest data release of the Vista Variables in Via Lactea (VVV) survey. The VVV is a deep near-infrared, multi-colour photometric survey with a coverage of 300 square degrees towards the Bulge/Bar. We use Red Clump (RC) stars to produce a high-resolution dust map of the VVV's field of view. From de-reddened colour-magnitude diagrams we select Red Giant Branch stars to investigate their 3D density distribution within the central 4 kpc. We demonstrate that our best-fit parametric model of the Bulge density provides a good description of the VVV data, with a median percentage residual of 5$\%$ over the fitted region. The strongest of the o…

Absolute magnitudeInitial mass functionastro-ph.GAMilky WayFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesGalaxy: bulgeBulge0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsRed clumpGalaxy: structureAstrophysics::Galaxy AstrophysicsComputingMilieux_MISCELLANEOUSLuminosity function (astronomy)Physics010308 nuclear & particles physicsGalactic CenterAstronomyAstronomy and AstrophysicsGalaxy: fundamental parametersAstrophysics - Astrophysics of GalaxiesGalaxy: centregalaxies: individual: Milky WayRed-giant branchSpace and Planetary ScienceGalaxy: formationAstrophysics of Galaxies (astro-ph.GA)[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Computational general relativistic force-free electrodynamics

2020

General relativistic force-free electrodynamics is one possible plasma-limit employed to analyze energetic outflows in which strong magnetic fields are dominant over all inertial phenomena. The amazing images of black hole shadows from the galactic center and the M87 galaxy provide a first direct glimpse into the physics of accretion flows in the most extreme environments of the universe. The efficient extraction of energy in the form of collimated outflows or jets from a rotating BH is directly linked to the topology of the surrounding magnetic field. We aim at providing a tool to numerically model the dynamics of such fields in magnetospheres around compact objects, such as black holes an…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsInertial frame of referenceActive galactic nucleus010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaGalactic CenterFOS: Physical sciencesSpherical coordinate systemAstronomy and AstrophysicsComputational Physics (physics.comp-ph)Magnetar01 natural sciencesGalaxyBlack holeNeutron starSpace and Planetary ScienceQuantum electrodynamics0103 physical sciencesAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for AstrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Physics - Computational Physics010303 astronomy & astrophysicsAstronomy & Astrophysics
researchProduct

Gravitational Lensing of Supernova Neutrinos

2006

The black hole at the center of the galaxy is a powerful lens for supernova neutrinos. In the very special circumstance of a supernova near the extended line of sight from Earth to the galactic center, lensing could dramatically enhance the neutrino flux at Earth and stretch the neutrino pulse.

Solar neutrinoAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciences010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysics010308 nuclear & particles physicsGalactic CenterAstrophysics (astro-ph)AstronomyAstronomy and AstrophysicsSolar neutrino problemGalaxySupernovaHigh Energy Physics - PhenomenologyGravitational lensPhysics::Space PhysicsMeasurements of neutrino speedHigh Energy Physics::ExperimentNeutrino
researchProduct

A Targeted Search for Point Sources of EeV Neutrons

2014

A flux of neutrons from an astrophysical source in the Galaxy can be detected in the Pierre Auger Observatory as an excess of cosmic-ray air showers arriving from the direction of the source. To avoid the statistical penalty for making many trials, classes of objects are tested in combinations as nine “target sets”, in addition to the search for a neutron flux from the Galactic Center or from the Galactic Plane. Within a target set, each candidate source is weighted in proportion to its electromagnetic flux, its exposure to the Auger Observatory, and its flux attenuation factor due to neutron decay. These searches do not find evidence for a neutron flux from any class of candidate sources. …

Astrofísica[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]AstronomyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics01 natural sciencesGalaxy: diskcosmic raysNeutron fluxObservatory0103 physical sciencesdata analysis [methods]Neutron010306 general physics010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Pierre Auger ObservatoryPhysics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Galactic CenterPierre Auger Observatory; cosmic ray; neutronsAstrophysics::Instrumentation and Methods for AstrophysicsFísicaAstronomy and AstrophysicsGalactic planemethods: data analysisMagnetic fluxGalaxyAstronomíaSpace and Planetary ScienceExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGddc:520Física nuclearAstrophysics - High Energy Astrophysical Phenomenadisk [Galaxy]
researchProduct

First M87 Event Horizon Telescope Results. I. the Shadow of the Supermassive Black Hole

2019

When surrounded by a transparent emission region, black holes are expected to reveal a dark shadow caused by gravitational light bending and photon capture at the event horizon. To image and study this phenomenon, we have assembled the Event Horizon Telescope, a global very long baseline interferometry array observing at a wavelength of 1.3 mm. This allows us to reconstruct event-horizon-scale images of the supermassive black hole candidate in the center of the giant elliptical galaxy M87. We have resolved the central compact radio source as an asymmetric bright emission ring with a diameter of 42 ± 3 μas, which is circular and encompasses a central depression in brightness with a flux rati…

010504 meteorology & atmospheric sciencesindividual (M87) [galaxies]Event horizonAstronomyblack hole physicsjets [galaxies]galaxies: individualAstrophysicshigh-resolution7. Clean energy01 natural sciencesPhoton sphereGeneral Relativity and Quantum Cosmologyaccretionsagittarius-a-asterisk010303 astronomy & astrophysicsgalactic-centerHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsradio-sourcesaccretion disksGalactic Centergrmhd simulations3. Good healthenergy-distributionsactive [galaxies]AnatomyAstrophysics - High Energy Astrophysical PhenomenaActive galactic nucleusAstrophysics::High Energy Astrophysical Phenomenagalaxies: activeFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic Astrophysicsgalaxies: individual: M87galaxies: individual (M87)Cell and Developmental BiologyGeneral Relativity and Quantum Cosmology0103 physical sciences(M87)Astrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesEvent Horizon TelescopeSupermassive black holeghz vlbi observationsfaraday-rotationAstronomy and Astrophysicsgalaxies: jetsAstrophysics - Astrophysics of GalaxiesBlack holeRotating black holeSpace and Planetary SciencegravitationAstrophysics of Galaxies (astro-ph.GA)advection-dominated accretion[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]ionized-gas
researchProduct